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Abstract: Model order reduction can be used for efficient simulation of complex systems.
Data-based system identification approaches using neuronal networks or Dynamic Mode
Decomposition enable us to extract characteristic properties of the system dynamics in order to
reduce them to a low-dimensional space. There the temporal propagation can be described with
significantly less computational effort. Both approaches are applied to the boundary actuated
St. Venant equations, to obtain control-oriented reduced order models, which try to capture the
dynamics of open channel flows for a wide range of input signals. It is investigated whether these
models can be used for efficient simulation and how accurately they reconstruct the dynamic
behavior of the water depth and velocity of an open channel.
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1. INTRODUCTION

Modeling and automatic control of water networks is be-
coming increasingly important, not least due to global
warming. Water networks include, e.g., irrigation, rain-
water and sewer networks. Hydrodynamic modeling tools
like the open source Storm Water Management Model
(SWMM) can be used for modeling and simulation of
such systems. The individual components of a water net-
work can be considered and modeled separately. Besides
catchment areas, retention basins and other facilities, the
channel reaches are central to describe the flow of the water
in a network.

A single channel can be described in detail using the
nonlinear partial differential equations (PDEs) of Saint-
Venant (1871), which can be derived from the Navier-
Stokes equations. Usually the gate opening or the wire
position and thus the discharge at the boundaries of a
channel forms the input of the system. The methods to
solve such a control problem can be divided into early
lumping (i.e., approximation based) and late lumping (i.e.,
PDE based) approaches. With respect to late lumping
Diagne et al. (2015); Rabbani et al. (2010) used a linearized
model to design a backstepping or flatness based controller
for irrigation channels. These approaches lead typically to
infinite-dimensional feedback controllers that need to be
discretized for implementation purposes. With regard to
early lumping the design of a control law is done based on
a discretized model, which has been presented by Xu et al.
(2012); Zeng et al. (2020). Optionally, the flow of open
channels can be described using simplifications of the St.
Venant equations or conceptual models. Examples include
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the Muskingum and Integrator Delay Model. These models
and corresponding control laws can be computed signifi-
cantly faster compared to using a discretized model, but
normally do not contain information about the water level
and the discharge of the whole channel. A comprehensive
review for modeling and control of irrigation channels is
given in Conde et al. (2021). The aforementioned hydro-
dynamic simulation tools such as SWMM are capable for
accurate simulation, but due to their complexity, these
approaches are less suitable for computationally intensive
optimal control. For this purpose, a reduced order model
(ROM) can be used, which reduces the model order while
preserving all relevant dynamics.

One approach that seems suitable to describe the dynamic
behavior of the entire water surface is Koopman operator-
based model order reduction (MOR). The main idea is
to identify some characteristic properties of the channel
dynamics and how they evolve in time. Recently data-
driven Koopman operator identification techniques like
Dynamic Mode Decomposition (DMD) and autoencoders
(AEs) have shown to be useful tools for MOR. Brunton
and Kutz (2019) give an extensive overview of data-based
modeling. The basic methods for system identification
have been extended by Proctor et al. (2016b,a) to consider
control inputs. Hence, complex high-dimensional systems
can be simulated and even controlled using information
from the low-dimensional subspace. Applications are found
in various areas such as fluid dynamics, neuroscience,
epidemiology among others (Maksakov and Palis, 2021;
Brunton et al., 2021; Arbabi et al., 2018).

DMD has been used to identify coherent structures of the
2D St. Venant equations for one specific scenario (Ahmed
et al., 2020; Bistrian and Navon, 2015). Maulik et al.
(2021) addresses this similarly using convolutional AEs.
However, the focus in these paper was on the reconstruc-
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tion and prediction of the high-dimensional system for a
specific scenario rather than the identification of a control-
oriented model. Such a model should cover the dynamics
broadly in order to enable an exact simulation with dif-
ferent input signals. Further it should noted that MOR
techniques usually do not consider conservation properties,
which hinders the creation of a ROM with input. To the
best of the authors knowledge no investigations on control-
oriented reduced order modeling of channel reaches using
Koopman operator theory has been reported so far.

In the following a data-driven control-oriented model is
determined, which enables a reconstruction of the channel
quantities. Thereby, the aforementioned issue of preserving
conservation properties is addressed by appropriate pre-
processing. A ROM is obtained from preprocessed simu-
lation data of the discretized St. Venant equations using
DMD with control and AEs. Note that a controller is not
designed within the scope of this paper. First the detailed
model of water in a single channel and its numerical solu-
tion are described in Section 2. An overview of Koopman
operator theory and data-driven system identification us-
ing DMD and AE approaches is given in Section 3. There-
upon, in Section 4, the preprocessing is shown, before the
presented MOR approaches are applied and simulatively
evaluated in 5. Finally, Section 6 concludes this paper with
a summary and remarks for future investigations.

2. MODELING OF OPEN CHANNEL REACHES

The fluid in open channels can be modeled using the St.
Venant equations which is a set of coupled nonlinear PDEs.
Inside the spatial domain x ∈ (0, L) of length L, the wetted
area A and the discharge Q at time t > 0 can be described
using the mass balance and momentum equation

∂tA+ ∂xQ = 0 (1a)

∂tQ+ ∂x

(
Q2

A

)
+ gA(∂xh+ Sf − S0) = 0 (1b)

with the initial conditions

A(x, 0) = A0, x ∈ [0, L], (1c)

Q(x, 0) = Q0, x ∈ [0, L]. (1d)

The upstream and downstream discharge determine the
boundary conditions

Q(0, t) = Qup(t), t ∈ R+
0 , (1e)

Q(L, t) = Qdown(t), t ∈ R+
0 , (1f)

which form the system inputs. The gravitational acceler-
ation and the bed slope are denoted as g and S0, respec-
tively. For the friction slope Sf the relation

Sf = n2
M

Q|Q|
A2R4/3

(2)

of Manning-Strickler can be used. There the friction coeffi-
cient nM , which is also referred to as Manning’s coefficient,
can be used to calibrate the model to the friction of the
reach. Further R denotes the hydraulic radius, which varies
with the water depth h > 0 and cross-section of the
channel. An open channel with a trapezoidal cross-section
is shown schematically in Figure 1. From this it can be
seen that the wetted area of a trapezoidal channel is

A(h) = h(B +mh) (3)

with the bed width B and the bank slope m, which are
assumed to be constant along the channel.

S0

A

B m
1

h

Q
1

Fig. 1. Schematic representation of an open channel with
trapezoidal cross-section.

Since no analytical solution has been found for the gov-
erning equations, the PDEs have to be solved numeri-
cally. As the St. Venant equations are hyperbolic PDEs,
conservation properties have to be taken into account
when choosing a numerical scheme. Therefore different ap-
proaches have been presented including the implicit Preis-
mann scheme or the semi-implicit scheme of Casulli (1990),
which is used in this work. It has been preferred over
the method of characteristics, because it is more suitable
for complex channel cross-sections and for accurate mass
conservation. Optionally finite volume or finite element
approaches could be used, therefore see, e.g., Benkhaldoun
and Seäıd (2010) and Utnes (1990).

The semi-implicit scheme of Casulli (1990) is based on
the (v, h)-form of the St. Venant equations, which can be
obtained from (1a) and (1b) after applying the chain rule
and using the relationship

Q = vA(h) (4)

with velocity v. The resulting (v, h)-form reads

∂th+
1

∂hA(h)
∂x (vA(h)) = 0, (5a)

∂tv + v∂xv + g

(
∂xh− S0 + n2

M

v|v|
R(h)4/3

)
= 0, (5b)

with the initial and boundary conditions

h(x, 0) = − B

2m
+

√(
B

2m

)2

+
A0

m
, x ∈ [0, L], (5c)

v(x, 0) =
Q0

A0
, x ∈ [0, L], (5d)

v(0, t)A(h(0, t)) = Qup(t), t ∈ R+
0 , (5e)

v(L, t)A(h(L, t)) = Qdown(t), t ∈ R+
0 . (5f)

Introducing the spatial discretisation scheme shown in
Figure 2, the domain is divided into N equidistant sections
of width ∆x. The water depth h = [h1, . . . , hN ]T is

x = 0 x = L

h1
v1/2 v3/2

h2 hi+1 hN
vi+1/2 vN+1/2vN−1/2

hi

∆x∆x/2

Fig. 2. Schematic representation of the discretisation grid.

computed on the center of the sections, while the velocities
v = [v1/2, . . . , vN+1/2]

T are computed on their edges.
Based on this notation and the staggered grid, the finite
difference scheme applied to (5a) yields

hκ+1
i − hκ

i

∆t
= − 1

(∂hA)κi

vκ+1
i+1/2A

κ
i+1/2 − vκ+1

i−1/2A
κ
i−1/2

∆x
, (6)

where κ and ∆t denote the time step and sample time,
respectively. For the first and last section of the domain

the boundary conditions (5e) and (5f) can be imposed
through vκ+1

1/2 Aκ
1/2 = Qκ+1

up and vκ+1
N+1/2A

κ
N+1/2 = Qκ+1

down,

respectively. Inside the domain, the water depth and thus
the wetted area at i± 1/2 can be computed from the mean
value of the neighboring section centers. Casulli (1990)
proposes the finite difference approximation of (5b) as

vκ+1
i+1/2 − vκi+1/2

∆t
+ g

(
∂xh

κ+1 − S0 + n2
M

vκ+1
i+1/2|v

κ
i+1/2|

R(hκ
i+1/2)

4/3

)

+ vκi+1/2∂xv
κ = 0, i ∈ {1 . . . N − 1}, (7)

which can be rearranged to

vκ+1
i+1/2 =

vκi+1/2 −∆t
(
vκi+1/2∂xv

κ − gS0

)

ακ
i+1/2︸ ︷︷ ︸

F (vκ
i+1/2

)

− ∆tg

ακ
i+1/2

∂xh
κ+1,

i ∈ {1 . . . N − 1}, (8)

with ακ
i+1/2 = 1+ gn2

M |vκi+1/2|/R(hκ
i+1/2)

4/3. Again the first

and last entry of v can be obtained from the boundary
conditions. It can be seen, that this approach allows the
explicit calculation of the velocity at time step κ + 1, if
the water depth at that time is known. To compute the
spatial derivatives of the water depth the finite difference
scheme ∂xh

κ+1|x=i+1/2 = (hκ+1
i+1 −hκ+1

i )/∆x is used, while
the term vκi+1/2∂xv

κ can be approximated using the upwind

scheme

vκi+1/2∂xv
κ =



vκi+1/2

vκi+1/2 − vκi−1/2

∆x
vκi+1/2 ≥ 0

vκi+1/2

vκi+3/2 − vκi+1/2

∆x
vκi+1/2 < 0.

(9)

After inserting (8), (6) can be reformulated as

(∂hA)
κ
i h

κ
i +

∆t

∆x

(
F (vκi−1/2)A

κ
i−1/2 − F (vκi+1/2)A

κ
i+1/2

)
=

(
(∂hA)

κ
i + γκ

i+1/2 + γκ
i−1/2

)
hκ+1
i −γκ

i+1/2h
κ+1
i+1 −γκ

i−1/2h
κ+1
i−1 ,

i ∈ {2 . . . N − 1} (10)

with γκ
i±1/2 = ∆t2gAκ

i±1/2/(α
κ
i±1/2∆x2). Thus a tridiagonal

system of linear equations can be recognized and solved
using matrix inversion or the Thomas algorithm. The
implicit solution of the water depth at the next time step is
used within (8) to determine the velocities vn+1 explicitly.

3. DATA-DRIVEN SYSTEM IDENTIFICATION

Based on real measurements or simulations, data can be
collected and used to identify the dynamical system. For
this purpose, the data is analyzed for characteristic prop-
erties and how these properties evolve over time. This task
is closely related to the Koopman theory, where a set of
measurement functions, which are called observables can
be identified and propagated in time using the linear Koop-
man operator. When first presenting the Koopman theory
in (Koopman, 1931), only autonomous systems have been
addressed. In recent years Proctor et al. (2016b) have
extended this approaches to systems with control inputs.
Generally, the observables and the corresponding Koop-
man operator are infinite-dimensional, but are reduced to
a n-dimensional set by spatial discretisation of the original

system during measurement or simulation. After spatial
discretisation a nonlinear discrete-time system of the form

ξκ+1 = f(ξκ,uκ) (11)

with f : Rn × Rl → Rn, the states ξκ ∈ Rn and inputs
uκ ∈ Rl is given. Regarding the St. Venant equations
and the numerical scheme presented in Section 2, the

state and input vector read ξκ =
[
(hκ)T , (vκ)T

]T
and

uκ =
[
Qκ

up, Q
κ
down

]T
, respectively. It can be propagated

in time using (10) and (8), which is represented by the
function f . First the states and inputs are lifted to the
state observables χκ ∈ Rno and input observables νκ ∈ Rl

using

χκ = ψ(ξκ), (12a)

νκ = ψu(u
κ), (12b)

with the nonlinear lifting functions ψ: Rn → Rno and ψu:
Rl → Rl. More details on the state and input lifting for
the examined problem are shown in Section 4. Thereupon
aiming to identify a few but essential Koopman modes
zκ ∈ Rr, r � n a suitable coordinate transformation
zκ = ϕ(χκ), with ϕ: Rno → Rr has to be found. These
identified Koopman modes represent a low-dimensional
subspace of the lifted space and can be propagated in time
using the linear time invariant system

zκ+1 = Ãzκ + B̃νκ =: F(zκ,νκ). (13)

with Ã ∈ Rr×r and B̃ ∈ Rr×l. Hence, (13) can be
used to approximate simulation of (11), while the original
states can be approximately reconstructed using inverse
transformations

ξκ ≈ ψ−1(ϕ−1(zκ)). (14)

In practice different approaches are used to identify
suitable coordinate transformations, essential Koopman
modes and how they evolve in time. Data-based methods
such as DMD with control or system identification using
AEs are commonly used for this purpose and will be briefly
presented next.

3.1 Extended Dynamic Mode Decomposition with control

Extended Dynamic Mode Decomposition with control
(EDMDc) presented by Korda and Mezić (2018) is the
combination of extended DMD (Matthew O. Williams,
2015) and DMDc (Proctor et al., 2016a). It aims to
determine a control-oriented ROM based on a dictionary
of observables instead of using the states only. Thus a low-
dimensional linear system of the form (13) can be identified
and used for prediction purposes. As a database for this
approach snapshots of the states and input are collected
and subsequently lifted to the state and input observables
using the lifting function (12a) and (12b), respectively.
In contrast to the work of Korda and Mezić (2018), the
inputs are also lifted here. The lifted snapshots are stored
columnwise in
Xlift =

[
χ0 χ1 . . . χm−1

]
, X ′

lift =
[
χ1 χ2 . . . χm

]
,

Ulift =
[
ν0 ν1 . . . νm−1

]
,

where the i-th column of the X ′
lift matrix should be ob-

tained from the corresponding column of the states in Xlift

and inputs from Ulift. Within EDMDc, this propagation is
approximated by a linear dynamical model written as

X ′
lift = AXlift +BUlift = [A B]

[
Xlift

Ulift

]
= GΩ. (15)
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The unknown matrices A ∈ Rno×no and B ∈ Rno×l are
determined by minimizing the one-step linear prediction
error of the observable snapshot matrices. Therefore the
singular value decomposition (SVD) of the stacked matrix

Ω ≈ Ũ Σ̃Ṽ ∗ has to be computed. By unstacking the (trun-

cated) matrix of left-singular vectors as Ũ =
[
ŨA ŨB

]T
the system matrices can be approximated using

[A B] ≈
[
Ā B̄

]
=

[
X ′

liftṼ Σ̃−1Ũ∗
A X ′

liftṼ Σ̃−1Ũ∗
B

]
. (16)

Thereupon to obtain a ROM in the form of (13) the
coordinate transformation

χκ = Ûzκ =: ϕ−1
DMD(z

κ) (17)

is applied, where Û ∈ Rno×r contains the left-singular
vectors corresponding to the first r dominant singular
values. Û can be obtained from the SVD of the matrixX ′

lift
and its subsequent truncation. Finally the ROM system
and input matrices from (13) are given by

Ã = Û∗ĀÛ ,

B̃ = Û∗B̄,
(18)

which are purely derived from the snapshot matrices of the
observables. Further details are given in Korda and Mezić
(2018); Proctor et al. (2016a).

3.2 System identification using autoencoders

An alternative approach is to use (deep) neuronal networks
for Koopman operator identification. Applications to non-
linear systems and PDEs have been presented by Lusch
et al. (2018) and Gin et al. (2021), respectively. Basically,
AEs consist of an encoder and a decoder part, which can
be used to compress the input at the encoder ϕAE(χ

κ) to
a reduced order state zκ of dimension r. The projection
of the encoder from χκ to zκ can be seen as a nonlinear
coordinate transformation. Again the ROM state can be
propagated in time using (13) with less computational ef-
fort. As a counterpart to the encoder, the decoder ϕ−1

AE can
be used to map the reduced state back to the observables,
which then can be transformed to the discretized states.
The AE scheme for identification of an appropriate co-
ordinate transformation and the corresponding dynamical
system is shown schematically in Figure 3. For the sake

χ1

χno

χκ

z1

zr

zκ

Encoder
ϕAE(χ)

νκ

z1

zr

zκ+1 χ1

χno

χκ+1

Decoder
ϕ−1

AE(z)F

Fig. 3. Model order reduction scheme using autoencoder.

of clarity, however, only the one-step propagation of the
state zκ is shown. The propagation can also take place for
several time steps before the decoder is applied. Thus an
q-step prediction of the low-dimensional state can be used
to obtain the observables after q time steps.

To fit the encoder and decoder to the training data, a
parameter optimization has to be carried out based on an
underlying loss function. Thereby three main parts have to

be considered. First the AE should accurately reconstruct
the original observables after encoding and decoding. The
corresponding part of the loss function reads

l1 =
∥∥χκ − ϕ−1

AE(ϕAE(χ
κ))

∥∥
L2

. (19)

Secondly, the i-th step propagation of the encoded state of
χκ should be identical to the encoded state at time step
κ+ i. In the loss function q steps will be considered. Thus
the second part of the loss function can be formulated as

l2 =

q∑
i=1

∥∥ϕAE(χ
κ+i)−F i(ϕAE(χ

κ),ν+)
∥∥
L2

(20)

with

F i(ϕAE(χ
κ),ν+) = F(...(F(ϕAE(χ

κ,νκ)...),νκ+i−1),
(21)

which denotes the recursive use of (13). Additionally the
decoded i-th step prediction should be close to the original
observables at time κ+ i. Hence the third part

l3 =

q∑
i=1

∥∥χκ+i − ϕ−1
AE(F

i(ϕAE(χ
κ),ν+))

∥∥
L2

(22)

is added to the loss function, so that the weighted multi-
objective loss function l = l1+wαl2+wβl3 can be used to
train the AE for the identification of the linear ROM and
the appropriate coordinate transformations.

One advantage of AEs compared to EDMDc is that non-
linear transformations can be used to obtain the reduced
order space. But the drawback compared to EDMDc is
that the number of ROM states has to be set a priori when
constructing the neuronal network, i.e., before potential
modes are identified. In addition, the effort required to
implement EDMDc is significantly lower.

4. PROCESS-INSIGHT-BASED STATE LIFTING

Before applying EDMDc and AE to obtain a ROM for an
open channel and for fluids in general, special attention has
to be paid to mass conservation. Both MOR approaches
from Section 3 do not satisfy conservation of the total
channel volume. To tackle this issue the snapshots can
be corrected using process information about the normal
depth and discharge, which is denoted by the lifting (12).
Chen et al. (2012) presented a scheme, where a base flow
is computed from the mean value and subsequently sub-
tracted from the state snapshots to obtain the observables.
In this work, however, the knowledge about the underlying
system is used to lift the states. Therefore the total volume
of the channel has to be computed for each snapshot using

V κ =

N∑
i=1

A(hκ
i )∆x (23)

with A(hi) from (3). The normal depth

hκ
n = − B

2m
+

√(
B

2m

)2

+
V κ

Lm
=: hn(V

κ) (24)

can be obtained from the inversion of (23) combined with
(3). In addition to the corrected water depth, the corrected
discharge, which is motivated by the boundary condition
is considered within the observables. Therefore the normal
discharge can be computed from (24) and is given by

Qκ
n =

A(hκ
n)R

2/3(hκ
n)
√
S0

n
(25)

Thus the discrete states ξκ and inputs uκ can be lifted to
the state and input observables using

χκ =
[
(hκ − hκ

n)
T , (vκAκ −Qκ

n)
T
]T

, (26)

νκ = uκ − [Qκ
n, Q

κ
n]

T , (27)

respectively. Thereby hκ
n = 1Nhκ

n and Qκ
n = 1N+1Q

κ
n

holds, while Aκ contains the wetted area on the cell
edges, which as in Section 2, are determined from the
water depths hκ

i . In order to reconstruct the spatially
discretized states from the ROM states, first ϕ−1 has to be
used to obtain the reconstructed observables. Afterwards
the inverse lifting has to be applied. Therefore the total
channel volume is computed using the mass balance

V̇ = Qup −Qdown, V0 = V (0). (28)

Again the normal depth and normal discharge can be
obtained from (28) using (24) and (25), respectively. These
quantities have to be added to the reconstructed observ-
ables to obtain the water depth and the discharge. Addi-
tionally the velocity can be computed by using (4). The
ROM is therefore left with the task of describing devia-
tions around the normal depth, while the total volume is
calculated separately. In this way, the volume and thus the
total mass of the channel is preserved.

5. APPLICATION TO THE ST. VENANT
EQUATIONS

For the evaluation of the MOR techniques an open channel
with trapezoidal profile is chosen. The used parameters are
listed in Appendix A. After numerical simulation of the
St. Venant equations using (10) and (8), with N = 100
the observables are determined from the scheme presented
in Section 4. Thus a wide database has been created from
several simulations with transitions between non-uniform
flow regimes, white noise and waveform actuations. The
computation of the EDMDc and AE scheme has been done
in Matlab and TensorFlow, respectively. The activation
functions of the autoencoder layers are chosen to be
sigmoid functions.

First the coordinate transformation and the simulative
behavior of the ROM are reviewed depending on the
ROM dimension. Therefore the directly reconstructed ob-
servables χROM

EDMDc = Û Û∗χ for EDMDc and χROM
AE =

ϕ−1
AE(ϕAE(χ)) for AE are compared to the original observ-

ables χ. Afterwards the simulation accuracy of the iden-
tified ROM is evaluated by computing future observables
using the ROM. For this purpose an initial ROM state
has to be computed from the coordinate transformation.
Starting from this state, future ROM states and thus
future observables can be reconstructed using ϕ−1, which
are compared to the numerical solution and the subsequent
lifting. Both quantities are considered separately and eval-
uated using the L2 error norm, which exemplary reads

∥∥∥h− hROM
∥∥∥
L2

=

√√√√ N∑
i=1

|hi − hROM
i |2 (29)

for the water depth. Figure 4 shows the average L2

error norm, depending on the dimension of the ROM, for
50 validation scenarios. Thereby the case of zero modes
represents the scenario, where only the normal depth and
discharge are used to approximate the dynamic behavior of
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Fig. 4. L2 error norm of the MOR schemes compared
to the discrete solution of the St. Venant equations,
with direct (top) and ROM simulation (bottom) re-
construction.

the system. The quality of direct reconstruction is shown
in top part. It can be seen that the accuracy increases
with the number of modes, whereby a change at lower
mode numbers results in a more significant impact than
the same increase at higher mode numbers. This can
be particularly seen in the reconstruction of the water
depth, where two modes provide approximately the same
accuracy as 15 modes. Both the reconstruction error of
the water depth and the discharge are smaller when using
EDMDc compared to the AE approach. A similar behavior
can be observed for the L2 error norm of the reconstructed
observables from the ROM simulations with a simulation
horizon of 1.5 h, which is shown in Figure 4 (bottom).
Additionally, it can be seen that the L2 error norm of
the water depth is almost unchanged for the simulation
and subsequent reconstruction compared to reconstruction
alone. For EDMDc the L2 error norm of the discharge
decreases until 8 modes and then starts to slightly increase,
which can be attributed to the fact that some modes which
represent more detailed structures of the training data
are considered there. These structures are not necessarily
included in the validation data and thus lead to weaker
results. Regarding the AE scheme, peaks at 3 and 12
modes can be observed. Even though the accuracy there
is lower than without using a MOR approach, it shows a
lower reliability of this approach compared to EDMDc.

The number of modes should be chosen based on the
required accuracy and available computational resources.
For water networks, the reduction to a minimum number
seems attractive to reduce the computational effort. To
give a rough estimate of the computational times, the
duration of all training scenarios was recorded. This shows
that the ROM of the form (13) can be run within under
0.1% of the time compared to the solution of the St.
Venant equation using (10) and (8). When the discretized
states should be reconstructed from the ROM states using
(14), the calculation time slightly increases, but is still
less than 1% compared to the numerical solution. Based
on this analysis and the results from Fig. 4 the choice of
r = 6 modes seems appropriate for state reconstruction
including simulations and will be used subsequently.

For a more detailed analysis of the dynamic behavior, a
scenario with the boundary excitation shown in Fig. 6 is
used. This excitation is not included in the training set.
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Thus the discrete states ξκ and inputs uκ can be lifted to
the state and input observables using

χκ =
[
(hκ − hκ

n)
T , (vκAκ −Qκ

n)
T
]T

, (26)

νκ = uκ − [Qκ
n, Q

κ
n]

T , (27)

respectively. Thereby hκ
n = 1Nhκ

n and Qκ
n = 1N+1Q

κ
n

holds, while Aκ contains the wetted area on the cell
edges, which as in Section 2, are determined from the
water depths hκ

i . In order to reconstruct the spatially
discretized states from the ROM states, first ϕ−1 has to be
used to obtain the reconstructed observables. Afterwards
the inverse lifting has to be applied. Therefore the total
channel volume is computed using the mass balance

V̇ = Qup −Qdown, V0 = V (0). (28)

Again the normal depth and normal discharge can be
obtained from (28) using (24) and (25), respectively. These
quantities have to be added to the reconstructed observ-
ables to obtain the water depth and the discharge. Addi-
tionally the velocity can be computed by using (4). The
ROM is therefore left with the task of describing devia-
tions around the normal depth, while the total volume is
calculated separately. In this way, the volume and thus the
total mass of the channel is preserved.

5. APPLICATION TO THE ST. VENANT
EQUATIONS

For the evaluation of the MOR techniques an open channel
with trapezoidal profile is chosen. The used parameters are
listed in Appendix A. After numerical simulation of the
St. Venant equations using (10) and (8), with N = 100
the observables are determined from the scheme presented
in Section 4. Thus a wide database has been created from
several simulations with transitions between non-uniform
flow regimes, white noise and waveform actuations. The
computation of the EDMDc and AE scheme has been done
in Matlab and TensorFlow, respectively. The activation
functions of the autoencoder layers are chosen to be
sigmoid functions.

First the coordinate transformation and the simulative
behavior of the ROM are reviewed depending on the
ROM dimension. Therefore the directly reconstructed ob-
servables χROM

EDMDc = Û Û∗χ for EDMDc and χROM
AE =

ϕ−1
AE(ϕAE(χ)) for AE are compared to the original observ-

ables χ. Afterwards the simulation accuracy of the iden-
tified ROM is evaluated by computing future observables
using the ROM. For this purpose an initial ROM state
has to be computed from the coordinate transformation.
Starting from this state, future ROM states and thus
future observables can be reconstructed using ϕ−1, which
are compared to the numerical solution and the subsequent
lifting. Both quantities are considered separately and eval-
uated using the L2 error norm, which exemplary reads

∥∥∥h− hROM
∥∥∥
L2

=

√√√√ N∑
i=1

|hi − hROM
i |2 (29)

for the water depth. Figure 4 shows the average L2

error norm, depending on the dimension of the ROM, for
50 validation scenarios. Thereby the case of zero modes
represents the scenario, where only the normal depth and
discharge are used to approximate the dynamic behavior of
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Fig. 4. L2 error norm of the MOR schemes compared
to the discrete solution of the St. Venant equations,
with direct (top) and ROM simulation (bottom) re-
construction.

the system. The quality of direct reconstruction is shown
in top part. It can be seen that the accuracy increases
with the number of modes, whereby a change at lower
mode numbers results in a more significant impact than
the same increase at higher mode numbers. This can
be particularly seen in the reconstruction of the water
depth, where two modes provide approximately the same
accuracy as 15 modes. Both the reconstruction error of
the water depth and the discharge are smaller when using
EDMDc compared to the AE approach. A similar behavior
can be observed for the L2 error norm of the reconstructed
observables from the ROM simulations with a simulation
horizon of 1.5 h, which is shown in Figure 4 (bottom).
Additionally, it can be seen that the L2 error norm of
the water depth is almost unchanged for the simulation
and subsequent reconstruction compared to reconstruction
alone. For EDMDc the L2 error norm of the discharge
decreases until 8 modes and then starts to slightly increase,
which can be attributed to the fact that some modes which
represent more detailed structures of the training data
are considered there. These structures are not necessarily
included in the validation data and thus lead to weaker
results. Regarding the AE scheme, peaks at 3 and 12
modes can be observed. Even though the accuracy there
is lower than without using a MOR approach, it shows a
lower reliability of this approach compared to EDMDc.

The number of modes should be chosen based on the
required accuracy and available computational resources.
For water networks, the reduction to a minimum number
seems attractive to reduce the computational effort. To
give a rough estimate of the computational times, the
duration of all training scenarios was recorded. This shows
that the ROM of the form (13) can be run within under
0.1% of the time compared to the solution of the St.
Venant equation using (10) and (8). When the discretized
states should be reconstructed from the ROM states using
(14), the calculation time slightly increases, but is still
less than 1% compared to the numerical solution. Based
on this analysis and the results from Fig. 4 the choice of
r = 6 modes seems appropriate for state reconstruction
including simulations and will be used subsequently.

For a more detailed analysis of the dynamic behavior, a
scenario with the boundary excitation shown in Fig. 6 is
used. This excitation is not included in the training set.
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The reconstructed states, i.e., the water depth and velocity
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Fig. 6. System input for ROM evaluation.

of the ROM simulation with this boundary excitation can
be seen in Fig. 5. Both, EDMDc and the AE approach are
able to replicate the quantitative behavior of the water
in the open channel. Starting at the uniform flow with a
constant discharge of Q(L, t) = Q(0, t) = Qn, the EDMDc
approach ideally reproduces both initial states, while the
AE approach shows small deviations. The rise of the left
and right boundary discharge cause a slow change of the
water surface and the velocity profile towards the non-
uniform flow regime with a constant flow Q > Qn. During
this rise first the water depth increases at the left bound
of the domain, followed by the decrease at the right bound
of the domain. When looking at Fig. 5 it can be seen, that
this behavior is replicated by both MOR approaches, with
EDMDc giving slightly better results. A more significant
difference occurs at the fluid velocity. In contrast to the
discrete simulation of the velocity where waves can be
observed, a closer look at the results of both approaches
shows that these waves appear washed out. Again, this
effect is less noticeable when using EDMDc. This can
also be seen from the L2 error norm shown in Fig. 7.
There it is also visible that after the transition to the
non-uniform flow regime, a constant L2 error norm occurs,
which indicates a steady-state solution of the ROM.

Overall, the surface and velocity profile of the water within
the channel can be reconstructed with small deviations
using only a few modes, six in this example. Due to the
introduced preprocessing, the total volume of the fluid is
preserved, so that the water depth can be approximated
during the waveform actuation and in the non-uniform
flow case, which is given after 1.5 hours.

6. CONCLUSION

Data-driven Koopman operator identification using ex-
tended Dynamic Mode Decomposition with control and
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Fig. 7. L2 error norm of the ROM simulations (Fig. 5,
middle/right) compared to the discrete solution of the
St. Venant equations (Fig. 5, left).

autoencoders applied to the St. Venant equations has
been presented. After process-insight-based state lifting a
suitable coordinate transformation and a control-oriented,
linear ROM can be identified and subsequently used for
efficient simulation under consideration of mass conserva-
tion. Both approaches reproduce the original states quan-
titatively well, with EDMDc giving slightly better results.
Additionally, this method can be applied with significantly
less effort. However, as with all data-driven applications,
it should be noted that the training data sets, the range of
the EDMD dictionary and the structure of the AE have a
crucial impact on the accuracy of the ROM. Overall, the
ability to efficiently simulate the dynamic behavior of both
the water depth and discharge for the whole channel is a
big advantage compared to other approximative models.

As this work is a first step towards simulation and con-
trol of water networks based on Koopman theory, further
improvement on reduced order modeling of a single chan-
nel will be addressed in the future. Therefore methods
presented by Maulik et al. (2021); Lu and Tartakovsky
(2020), which seem promising when applied to advection-
dominant problems, could be used. Since these methods
have difficulties to handle multiwaves, an extension has to
be found, which can then be tested on the St. Venant equa-
tions. Additionally a wider range of dictionary functions
applied to the lifted observables could be used for further
improvement of EDMDc and AE performance. Since the
presented approach has proven to be efficient and accurate
for open channel simulation, it can be further coupled with
the hydrodynamic simulation software SWMM and used
as an underlying model for model-based optimal control.
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Fig. 5. Water depth (top row) and discharge (bottom row) simulation of an open channel using the discretized (left
column), EDMDc (middle column) and autoencoder (right column) model.
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Appendix A. USED PARAMETERS

Channel
L B nM m S0

3000 7 0.02 1.5 1 · 10−4

Autoencoder layers loss weighting
Encoder Decoder wα wβ

[120, 60, 30] [30, 60, 120] 50 1 · 103
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Appendix A. USED PARAMETERS

Channel
L B nM m S0

3000 7 0.02 1.5 1 · 10−4

Autoencoder layers loss weighting
Encoder Decoder wα wβ

[120, 60, 30] [30, 60, 120] 50 1 · 103


